عنوان : 

دانشگاه آزاد اسلامی

واحد تهران جنوب

دانشکده تحصیلات تکمیلی

پایان نامه برای دریافت درجه کارشناسی ارشد “M.Sc”

مهندسی برق-الکترونیک

عنوان :

طراحی و تحلیل یک مخلوط کنندهی متعادل در باند فرکانسی خیلی وسیع

UWB با بهره گیری از تکنولوژی CMOS

استاد راهنما :

دکتر فرخ حجت کاشانی

استاد مشاور :

دکتر علی فرخی

آذر 1389

برای رعایت حریم خصوصی نام نگارنده پایان نامه درج نمی گردد
(در فایل دانلودی نام نویسنده موجود می باشد)
تکه هایی از متن پایان نامه به عنوان نمونه :

فهرست مطالب      
عنوان   شماره صفحه  
چکیده:………………………….. ………………………………………………………. …………………………………………………………………….. 1
مقدمه: ………………………….. ………………………………………………………. …………………………………………………………………….. 2
.1   فصل اول: سیستمهای فراپهن باند ………………………….. (UWB) ………………………………………….. 4
1-1 تاریخچه تکنولوژی فراپهن باند ………………………….. UWB …………………………………………………………. 5
2-1 مفهوم ………………………………………………………. UWB …………………………………………………………………… 8
3-1 تعریف سیستم فراپهن باند ………………………….. ……………………………………………………………………………… 9
4-1 مزایای تکنولوژی فراپهن باند ………………………….. UWB ……………………………………………………………. 9
1-4-1 توانایی اشتراک طیف توانی ………………………….. ……………………………………………………………………… 9
2-4-1 ظرفیت بالای کانال ………………………………………………………. …………………………………………………… 10
3-4-1 توانایی کار با SNR پایین ………………………….. ……………………………………………………………………. 10
4-4-1 احتمال تشخیص و آشکارسازی کم ………………………….. ……………………………………………………… 10
5-4-1 مقاومت در برابر مسدود شدن ………………………….. ………………………………………………………………. 11
6-4-1 کارایی بالا در کانالهای چند مسیره ………………………….. ……………………………………………………. 11
5-1 چالشهای تکنولوژی فراپهن باند ………………………….. UWB …………………………………………………… 12
1-5-1 انحراف شکل پالس ………………………………………………………. …………………………………………………… 12
2-5-1 تخمین کانال ………………………………………………………. …………………………………………………………….. 12
3-5-1 تطبیق فرکانس بالا ………………………………………………………. …………………………………………………… 12
4-5-1 تداخل دستیابی چندگانه ………………………….. ……………………………………………………………………… 13
6-1 UWB در مقایسه با سایر استانداردهای ……………………………………………………………… IEEE 13
7-1 تفاوت بین UWB و طیف گسترده ………………………….. …………………………………………………………….. 15
1-7-1 رشتهی پیوستهی طیف گسترده …………………………………………………………………….. (DSSS) 15
2-7-1 جهش فرکانسی طیف گسترده ……………….. ……………………………………………………….(FHSS) 15
3-7-1 تفاوتهای اساسی بین UWB و طیف گسترده ………………………………………………………………. 15
8-1 روشهای پیاده سازی سیستم فراپهن باند ………………………….. …………………………………………………… 16
1-8-1 سیستم ……………………………………..(Code Division Multiple Access) CDMA 16
2-8-1 سیستم ………. (Orthogonal Frequency Division Multiplexing) OFDM 18
.2   فصل دوم: مخلوطکنندههای فرکانسی ………………………………………………….MIXER 19
1-2 تاریخچه ………………………………………………………. ………………………………………………………………………….. 20
2-2 انواع میکسر ………………………………………………………. …………………………………………………………………….. 21

 

1-2-2 میکسرهای غیر فعال …………………………………………………………………………………… 22 …………………….
2-2-2 میکسر گیلبرت ………………………………………………………………………………………………………………….. 24
3-2 کاربرد میکسر …………………………………………………………………………………………………………………………… 28
4-2 عملکرد میکسر …………………………………………………………………………………………………………………………. 29
1-4-2 میکسر به عنوان یک ضرب کننده …………………………………………………………………………………….. 29
2-4-2 عملکرد میکسر به کمک یک سوئیچ …………………………………………………………………………………. 30
.3  فصل سوم: مطالعه میکسرهای توزیع شدهی فراپهن باند …………………………………………………… 32
1-3 مقدمه ………………………………………………………………………………………………………………………………………. 33
2-3 مدارات توزیع شده ……………………………………………………………………………………………………………………. 34
3-3 مطالعه عملکرد سیگنال بزرگ میکسر گیلبرت به عنوان یک عنصر غیر خطی …………………………. 35
4-3 میکسر سلول گیلبرت توزیع شده …………………………………………………………………………………………….. 39
1-4-3 بهرهی تبدیل …………………………………………………………………………………………………………………….. 40
2-4-3 تکنیک تزریق جریان …………………………………………………………………………………………………………. 40
3-4-3 تکنیک پیکینگ سلفی ………………………………………………………………………………………………………. 42
5-3 مروری بر چند ساختار میکسر پهن باند ارایه شده ……………………………………………………………………. 44
1-5-3 ساختار میکسر ………………………………………………………………………………………………………[18] 1 44
2-5-3 ساختار میکسر ………………………………………………………………………………………………………[12] 2 45
3-5-3 ساختار میکسر ………………………………………………………………………………………………………[19] 3 45
4-5-3 ساختار میکسر ………………………………………………………………………………………………………[20] 4 46
5-5-3 ساختار میکسر ………………………………………………………………………………………………………[21] 5 47
6-5-3 ساختار میکسر ………………………………………………………………………………………………………[22] 6 48
7-5-3 ساختار میکسر ………………………………………………………………………………………………………[23] 7 49
8-5-3 مقایسه ساختار های متفاوت میکسرهای فراپهن باند ………………………………………………………. 51
.4   فصل چهارم: تحلیل اعوجاج و نویز در میکسر فراپهن باند …………………………………………………. 52
1-4 مقدمه ………………………………………………………………………………………………………………………………………. 53
2-4 میکسر یک عنصر غیر خطی …………………………………………………………………………………………………….. 53
3-4 مدل غیر خطی گیرنده …………………………………………………………………………………………………………….. 54
4-4 اثرات اعوجاج در سیستمهای فراپهن باند ………………………………………………………………………………… 54
1-4-4 تولید هارمونیک …………………………………………………………………………………………………………………. 55
2-4-4 فشردگی بهره …………………………………………………………………………………………………………………….. 55
3-4-4 اینترمدولاسیون …………………………………………………………………………………………………………………. 56
4-4-4 اینترمدولاسیون مرتبهی دوم ……………………………………………………………………………………………. 56

 
 

5-4-4 اینترمدولاسیون مرتبهی سوم …………………………………………………………………………………………… 57
6-4-4 اعوجاج در سیستمهای متوالی ………………………………………………………………………………………….. 59
7-4-4 مشخصات خطی گیرنده ……………………………………………………………………………………………………. 59
5-4 مطالعه نویز میکسر به عنوان یک عنصر غیر خطی …………………………………………………………………… 60
1-5-4 پردازش نویز متغیر با زمان ……………………………………………………………………………………………….. 60
2-5-4 نویز طبقهی راهانداز (طبقهی ……………………………………………………………………………………(RF 61
3-5-4 نویز طبقهی سوئیچ (طبقهی ……………………………………………………………………………………(LO 62
4-5-4 نویز طبقهی ………………………………………………………………………………………………………………….IF 63
.5   فصل پنجم: مدار پیشنهادی، طراحی مخلوط کنندهی فرکانسی فراپهن باند توزیع شده ………. 64
1-5 مقدمه ………………………………………………………………………………………………………………………………………. 65
2-5 مدل المانهای مورد بهره گیری ……………………………………………………………………………………………………. 65
3-5 تحلیلگرهای بهره گیری شده در نرمافزار ………………………………………………………………………….ADS 67
1-3-5 تحلیلگر ……………………………………………………………………HARMONIC BALANCE 68
2-3-5 تحلیلگر ………………………………………………………………………………………………………………. LSSP 68
4-5 طراحی میکسر توزیع شده با سلولهای میکسر تک بالانس …………………………………………………….. 69
1-4-5 طراحی میکسر …………………………………………………………………………………………………………………… 69
2-4-5 بایاس مدار …………………………………………………………………………………………………………………………. 70
3-4-5 پارامترهای قابل تغییر و طراحی ……………………………………………………………………………………….. 71
4-4-5 تحلیل و شبیهسازی ………………………………………………………………………………………………………….. 72
5-5 طراحی میکسر توزیع شده با سلولهای میکسر سلول گیلبرت ………………………………………………… 74
1-5-5 طراحی میکسر …………………………………………………………………………………………………………………… 74
2-5-5 بایاس مدار …………………………………………………………………………………………………………………………. 75
3-5-5 تحلیل و شبیهسازی ………………………………………………………………………………………………………….. 76
6-5 طراحی میکسر توزیع شده با سلولهای میکسر گیلبرت و با بهره گیری از تکنیک پیکینگ سلفی.. 78
1-6-5 تکنیک پیکینگ سلفی ………………………………………………………………………………………………………. 78
2-6-5 بایاس مدار …………………………………………………………………………………………………………………………. 80
3-6-5 طراحی میکسر توزیع شدهی نهایی …………………………………………………………………………………… 80
4-6-5 مقادیر المانهای مدار میکسر پس از طراحی …………………………………………………………………… 84
5-6-5 تحلیل و شبیه سازی …………………………………………………………………………………………………………. 86
7-5 نتیجهگیری و مقایسه ………………………………………………………………………………………………………………. 90
.6   فصل ششم: نتیجهگیری و پیشنهادات ………………………………………………………………………………. 92
1-6 نتیجهگیری ………………………………………………………………………………………………………………………………. 93

 

2-6 پیشنهادات ……………………………………………………………………………………………………………………………….. 94
.7   فصل هفتم: منابع و ماخذ …………………………………………………………………………………………………. 95
منابع لاتین ………………………………………………………………………………………………………………………………………………… 96
چکیده انگلیسی: ……………………………………………………………………………………………………………………………………………. 98

 
فهرست جدول ها:
 
عنوان                                                                                                 شماره صفحه
 
جدول 1- 1 قابلیت UWB در مقایسه با سایر استانداردهای 14…………………………………. [2] IEEE
 
جدول 1- 3 مقایسهی ساختارهای مختلف میکسرهای فراپهن باند………………………………………….. 51
 
جدول 1- 5 مقادیر سلفهای مدار نهایی………………………………………………………………………. 85
 
جدول 2- 5 عرض ترانزیستورهای مدار نهایی………………………………………………………………… 85
 
جدول 3- 5 مقادیر پارامترهای DC ترانزیستورهای میکسر توزیع شده نهایی………………………………. 85
 
جدول 4-5 مقدار نشت پورت های مختلف میکسر پیشنهادی در یکدیگر بعد از مدل سازی اثر عدم تطبیـق ابعـاد
 
ترانزیستورها، روی ولتاژ آستانه………………………………………………………………………………………….. 88
 
جدول 5- 5 مقایسهی سه ساختار به دست آمده طول طراحی………………………………………………. 90
 
جدول 6- 5 مشخصات مدار میکسر توزیع شدهی پیشنهادی………………………………………………… 90
 
جدول 7- 5 مقایسه میکسر طراحی شده در این پایان نامه با کارهای انجام شدهی قبلی………………….. 91
 
فهرست شکلها:
 
عنوان                                                                                                 شماره صفحه
شکل 1-1 تاریخچهی تکنولوژی فراپهن باند……………………………………………………………………. 6
 
شکل 2-1 طرح ماسک توان برای سیستم UWB بر حسب فرکانس 7…………………………………….. [3]
 
شکل 3-1 سیگنال باند باریک در حوزهی (a) زمان و (b) فرکانس………………………………………….. 8
 
شکل 4-1 یک پالس با Duty Cycle کم……………………………………………………………………. 8
 
شکل 5-1 پالس UWB در حوزههای((a زمان و (b) فرکانس………………………………………………. 9
 
شکل 6-1 همزیستی سیگنالهای فراپهن باند با سیگنالهای باند باریک و باند پهن در طیف فرکانسی 10.. RF
 
شکل (a) 7-1 پدیدهی چند مسیره در انتقال بیسیم (b) اثر پدیدهی چند مسیره بر سیگنال های بانـد باریـک
 
(c) اثر پدیدهی چند مسیره بر سیگنالهای باند فرا پهن………………………………………………………………… 11
 
شکل 8-1 رفتار حوزههای زمان و فرکانس سیگنالهای UWB (a) و (b) باند باریک……………………… 13
 
شکل 9-1 طیف فرکانسی UWB به همراه سیستمهای تداخلی داخل و خارج باند………………………… 14
 
شکل 10-1 سیگنالهای (a) باند باریک، (b) طیف گسترده و (c) فراپهن باند در حوزههای زمان و فرکانس .. 16
 
شکل 11-1 روش دسترسی 16……………………………………………………………………….. TDMA
 
شکل 12-1 عملیات کد کردن در 17……………………………………………………… [5] DS-CDMA
 
شکل 13-1 نحوهی بهره گیری از پهنای باند در سیستم 17………………………………………. DS-CDMA
 
شکل 14-1 گروه بندی طیف فرکانسی 18…………………………………………………….. MB-OFDM
 
شکل 15-1 طیف فرکانسی 18……………………………………………………………. [7] MB-OFDM
 
شکل 1-2 ساختار گیرنده سوپر هترودین……………………………………………………………………. 20
 
شکل 2-2 میکسر به عنوان یک عنصر سه دهانه…………………………………………………………….. 21
 
شکل 3-2 میکسر غیرفعال با تعادل دوگانه با 22…………………………………………………….. CMOS
 
شکل 4-2 میکسر گیلبرت ساده………………………………………………………………………………. 24
 
شکل 5-2 میکسر گیلبرت با تعادل دوگانه…………………………………………………………………… 25
 
شکل 6-2 منحنی بهرهی سوئیچ میکسر گیلبرت با تعادل دوگانه…………………………………………… 26
 
شکل 7-2 میکسر گیلبرت با تعادل دوگانه با تکنیک ربودن جریان 27…………………………………… DC
 
شکل 8-2 میکسر به عنوان یک ضرب کننده 29……………………………………………………………. [3]
 
شکل 9-2 میکسر با ساختار تکی…………………………………………………………………………….. 31
 
شکل 10-2 میکسر با ساختار متوازن تکی…………………………………………………………………… 31
 
شکل 1-3 بلوک دیاگرام مدار ترکیبی توزیع شده (a) موجبر هم محور واقعی (b) مدارات LC مصنوعی33[11]
 
شکل 2-3 مدل خطوط انتقال مصنوعی………………………………………………………………………. 34
 
شکل 3-3 شمای نحوهی قرار گیری سلولهای مدار توزیع شده بین دو خط انتقال………………………….. 35
 
شکل 4-3 میکسر گیلبرت 36…………………………………………………………………………. CMOS
 
 
شکل 6-3 شکل موجهای p(t) و 38…………………………………………………………………….. p1 (t)
 
شکل 7-3 مدار معادل خط انتقال……………………………………………………………………………. 40
 
شکل 8-3 شماتیک مدار میکسر گیلبرت با تکنیک تزریق جریان…………………………………………… 41
 
شکل 9-3 شماتیک مدار میکسر گیلبرت با طبقهی ترارسانایی مکمل………………………………………. 41
 
شکل 10-3 مدل مدار ساده شده برای (a) میکسر متداول (b) میکسر با تکنیک پیکینگ سلفی سری……. 43
 
شکل (a) 11-3 مدل سیگنال کوچک یک تقویت کننده (b) شـبکهی پسـیو اضـافه شـده بـرای ایزولـه کـردن
 
خازنهای پارازیتی (c) پیاده سازی این شبکه با سلف…………………………………………………………………… 43
 
شکل 12-3 مدار میکسر ساختار 44…………………………………………………………………………… 1
 
شکل 13-3 مدار میکسر ساختار 45…………………………………………………………………………… 2
 
شکل 14-3 مدار میکسر ساختار 46…………………………………………………………………………… 3
 
شکل 15-3 مدار میکسر ساختار 47…………………………………………………………………………… 4
 
شکل 16-3 مدار تطبیق UWB برای سیگنال ورودی 47…………………………………………………. RF
 
شکل 17-3  مدار میکسر ساختار 48………………………………………………………………………….. 5
 
شکل 18-3 مدار میکسر ساختار 49…………………………………………………………………………… 6
 
شکل 19-3 مدار میکسر ساختار 50…………………………………………………………………………… 7
 
شکل 1-4 طیف فرکانسی MB-OFDM به همراه سیستمهای تداخلی داخل و خارج باند 53…………… [7]
 
شکل (a) 2-4 مدار سوئیچ ساده (b) سیستم غیر خطی متغیر با زمان (c) سیستم خطی متغیر با زمان….. 54
 
شکل 3-4 طیف خروجی سیستم غیرخطی با درجهی دو و سه……………………………………………… 54
 
شکل 4-4 نقطه تراکم 56………………………………………………………………………………….. 1dB
 
شکل 5-4 مولفههای اینترمدولاسیون در خروجی یک سیستم غیرخطی درجهی 56…………………………. 2
 
شکل 6-4 نحوهی تداخل اینترمدولاسیون مرتبهی 2 با سیگنال مطلوب 57……………………………….. [7]
 
شکل 7-4 مولفههای اینترمدولاسیون در خروجی یک سیستم با خاصیت غیرخطی مرتبهی سوم………….. 58
 
شکل 8-4 تداخل اینترمدولاسیون مرتبهی 3 با سیگنال مطلوب 58……………………………………….. [7]
 
شکل (a) 9-4 دامنهی نقطه تقاطع مرتبهی سوم ورودی (b) نقطه تقاطع مرتبـهی سـوم ورودی و خروجـی بـه
 
صورت لگاریتمی 59………………………………………………………………………………….. [5] (IIP3,OIP3)
 
شکل 10-4 میکسر فعال تک بالانس 61……………………………………………………………… CMOS
 
شکل 11-4 شکل موج 62………………………………………………………………………………… p1 (t)
 
شکل 1-5 بلوک دیاگرام مدار توزیع شده (a)خطوط انتقال واقعی (b) پیاده سازی با مدارات LC (خـط انتقـال
 
مصنوعی)…………………………………………………………………………………………………………………. 65
 
شکل 2-5 مدل ترانزیستور 66…………………………………………………………………………. TSMC
 
شکل 3-5 مدل مدار معادل برای یک ترانزیستور 66………………………………………. [26] RF nMOS
 
شکل 4-5 مدل سلف 67………………………………………………………………………………. TSMC
 
شکل 5-5 نمای Layout سلف در تراشه……………………………………………………………………. 67
 
شکل 6-5 مدار معادل یک سلف استاندارد 67…………………………………………………………….. [26]
 
شکل 7-5 تحلیلگر HARMONIC BALANCE در نرم افزار 68………………………………… ADS
 
شکل 8-5 تحلیلگر LSSP در نرم افزار 68………………………………………………………………. ADS
 
شکل 9-5 ساختار میکسر توزیع شدهی تک بالانس…………………………………………………………. 69
 
شکل 10-5 شماتیک میکسر توزیع شدهی تک بالانس در نرم افزار 70…………………………………. ADS
 
شکل 11-5 مدار بایاس طبقهی 70…………………………………………………………………………. RF
 
شکل 12-5 مدار بایاس گیت ترانزیستورهای طبقهی 71…………………………………………………… LO
 
شکل 13-5 مدار بایاس درین ترانزیستورهای طبقهی 71………………………………………………….. LO
 
شکل 14-5 روابط به کار رفته در نرمافزار ADS برای محاسبهی 72……………………………………. IIP3
 
شکل 15-5 نمودار عدد نویز میکسر طراحی شده با سلول تک بالانس……………………………………… 72
 
شکل 16-5 نمودار IIP3 میکسر طراحی شده با سلول تک بالانس………………………………………… 73
 
شکل 17-5 نمودار IIP2 میکسر طراحی شده با سلول تک بالانس………………………………………… 73
 
شکل 18-5 نمودار بهرهی تبدیل میکسر طراحی شده با سلول تک بالانس………………………………… 73
 
شکل 19-5 نمودار ضریب انعکاس ورودی میکسر طراحی شده با سلول تک بالانس……………………….. 74
 
شکل 20-5 نمودار ضریب انعکاس خروجی میکسر طراحی شده با سلول تک بالانس………………………. 74
 
شکل 21-5 ساختار میکسر توزیع شدهی گیلبرت…………………………………………………………… 75
 
شکل 22-5 شماتیک میکسر توزیع شدهی گیلبرت در نرم افزار 75…………………………………….. ADS
 
شکل 23-5 نمودار بهرهی تبدیل میکسر طراحی شده با سلول گیلبرت…………………………………….. 76
 
شکل 24-5 نمودار ضریب انعکاس ورودی میکسر طراحی شده با سلول گیلبرت…………………………… 77
 
شکل 25-5 نمودار ضریب انعکاس خروجی میکسر طراحی شده با سلول گیلبرت………………………….. 77
 
شکل 26-5 نمودار عدد نویز میکسر طراحی شده با سلول گیلبرت…………………………………………. 77
 
شکل 27-5 نمودار IIP3 میکسر طراحی شده با سلول گیلبرت…………………………………………….. 78
 
شکل 28-5 ساختار میکسر توزیع شدهی گیلبرت با تکنیک پیکینگ سلفی……………………………….. 79
 
شکل 29-5 ساختار میکسر توزیع شدهی گیلبرت با تکنیک پیکینگ سلفی در نرم افزار 79…………… ADS
 
شکل 30-5 مدار بایاس درین ترانزیستورهای طبقهی 80………………………………………………….. LO
 
شکل 31-5 نمودار جریان مصرفی میکسر بر حسب تغییرات عرض ترانزیستورها…………………………… 81
 
شکل 32-5 نمودار تطبیق ورودی میکسر بر حسب تغییرات عرض ترانزیستورها در فرکانس 82…… 10 GHz
 
شکل 33-5 نمودار بهرهی تبدیل میکسر بر حسب تغییرات عرض ترانزیستورها…………………………….. 82
 
شکل 34-5 نمودار IIP3 میکسر بر حسب تغییرات عرض ترانزیستورها…………………………………….. 83
 
شکل 35-5 نمودار بهرهی تبدیل میکسر بر حسب تغییرات سلفهای پیکینگ در سه فرکانس……………… 83
 
شکل 36-5 بهرهی تبدیل میکسر بر حسب فرکانس و مقادیر مختلف سلفهای پیکینگ……………………. 84
 
شکل 37-5 نمودار IIP3 میکسر بر حسب تغییرات سلفهای پیکینگ در سه فرکانس……………………… 84
 
شکل 38-5 نمودارضرایب انعکاس ورودی و خروجی میکسر توزیع شدهی پیشنهادی………………………. 86
 
شکل 39-5 نمودار بهره میکسر طراحی شده با دو سلول گیلبرت و با تکنیک پیکینگ سلفی……………… 86
 
شکل 40-5 نمودار نشت پورت LO در 87…………………………………………………………………. RF
 
شکل 41-5 نمودار نشت پورت LO در 87………………………………………………………………….. IF
 
شکل 42-5 نمودار نشت پورت RF در 87…………………………………………………………………. LO
 
شکل 43-5 نمودار نشت پورت RF در 88………………………………………………………………….. IF
 
شکل 44-5 عدد نویز میکسر طراحی شده با دو سلول گیلبرت و با تکنیک پیکینگ سلفی……………….. 88
 
شکل 45-5 نقطه تقاطع مرتبه سوم ورودی (IIP3) میکسر طراحـی شـده بـا دو سـلول گیلبـرت و بـا تکنیـک
 
پیکینگ سلفی…………………………………………………………………………………………………………… 89
 
شکل 46-5 نقطه تقاطع مرتبه دوم ورودی (IIP2) میکسـر طراحـی شـده بـا دو سـلول گیلبـرت و بـا تکنیـک
 
پیکینگ سلفی…………………………………………………………………………………………………………… 89
شکل 47-5 نمودار P1dB میکسر طراحی شده با دو سلول گیلبرت و با تکنیک پیکینگ سلفی…………… 90
 
 
چکیده:
 
رشد سریع تکنولوژی و پیشرفت موفق تجاری مخابرات بی سیم روی زنـدگی روزمـره ی مـا تـاثیر قابل توجهی گذاشته می باشد. امروزه بهکار بردن میکسرهای فرکانس بالا در سیستم های ارتباطاتی بیسـیم، دارای اهمیت خاصی میباشد. میکسرها یکی از اجزای اساسـی گیرنـده در مخـابرات بـیسـیم محسـوب میشوند. اجرای میکسرهای پایین آورنده1 در گیرنده ها به لحاظ وجود نویز و تضعیف در سیگنال دریافتی از اهمیت بیشتری برخوردار می باشد.
هدف اصلی این پایان نامه، تحلیل و طراحـی میکسـر بـرای کـاربرد در بانـد فرکانسـی فـراپهن (UWB) و با بهره گیری از تکنولوژی CMOS می باشد. آغاز عملکرد یک میکسر توزیع شده مطالعه شده، سپس مدار میکسر پیشنهادی توزیع شده، ارایه می گردد. میکسر پیشنهادی دارای بهـره ی تبـدیل 3dB، IIP3 برابر 5/5dBm، عدد نویز 7dB، پهنـای بانـد 3 تـا 10 گیگـاهرتز و تـوان مصـرفی 52 میلـی وات میباشد. میکسر فراپهن باند توزیع شدهی پیشنهادی با بهره گیری از تکنولوژی CMOS 0/18μm با منبع تغذیه 1/8 ولت طراحی شده می باشد.
 
مقدمه:
 
رشد سریع تکنولوژی و گذار از مخابرات آنالوگ به دیجیتال، ترقی سیستم های رادیویی بـه نسـل سوم و چهارم و جانشینی سیستم های سیمی با Wi-Fi و Bluetooth مشـتریان را قـادر مـی سـازد بـه گستره ی عظیمی از اطلاعات از هرجا و هر زمان دسترسی داشته باشند. مخابرات UWB برای اولین بـار در دهــهی 1960 معرفــی شــد و در ســال 2002، FCC1 رنــج فرکانســی 3.1~10.6GHz را بــرای کاربردهای UWB معرفی و توان انتقال آنرا به -41.3dBm محدود نمود، بدین معنا کـه سیسـتمهـای
 
UWB روی فراهم کردن: توان کم، قیمت کم و عملکرد باند وسیع در مساحت کوتـاه تمرکـز کردنـد. در مقایسه با کاربردهای باند باریک طراحی المانها در سیستمهای UWB بسیار متفاوت و مشکل می باشد.
 
یکی از بلوکهای مهم در گیرندههای UWB میکسرها هستند کـه بـرای تبـادل اطلاعـات بـین تعداد زیادی کانال مشابه UWB تأثیر کلیدی دارند. اهمیـت عملکـرد میکسـر بـه عنـوان یـک مبـدل فرکانس، در تامین فرکانسهای کاری مناسب با پایداری و نـویز مطلـوب اسـت. میکسـر مـیبایسـتی: (1
بهرهی تبدیل بالا، که اثرات نویز در طبقات بعدی را کاهش دهـد، (2 عـددنویز کوچـک، کـه LNA را از داشتن یک بهرهی بالا راحت کند و (3 خطی بودن بالا، که رنج دینامیک گیرنده را بهبود بخشد و سطوح اینترمدولاسیون2 را کاهش دهد. هر کارایی بایستی توسط مصالحه در طراحی میکسر بهدست آید. میکسر سلول گیلبرت با بعضی تغییرات در ساختار آن نتایج قابل قبـولی بـرای کـاربرد در سیسـتمهـای UWB
 
بهدست میدهد.
 
دستیابی همزمان به بهره ی تبدیل و خطی بودن بـالا کـه افـزایش یکـی باعـث کـاهش دیگـری می گردد یکی از چالش های طراحی میکسر می باشد، در کارهایی کـه تـا کنـون انجـام شـده تمرکـز روی دستیابی یکی از این دو بوده به طوریکه یا میکسری غیر فعال با خطی بودن قابل قبـول و یـا میکسـری فعال با خطی بودن کم ارائه شده می باشد. تطبیق امپدانس در کل رنج فرکانسی 7 گیگا هرتـزی و همچنـین عدد نویز پایین از دیگر پارامترهای مهم طراحی میکسر میباشد.
 
9 اهداف پایان نامه
 
در این پایان نامه با مطالعه میکسرهای فراپهن باند و مقایسهی آنها از نظر ساختار، بهرهی مدار، عدد نویز، تطبیق در ورودی و خروجی و خطی بودن، سـاختار مناسـب بـرای یـک میکسـر فـراپهن بانـد پیشنهاد شده و از لحاظ کارکرد در سیستمهای UWB مطالعه گشته می باشد.
 
بر خلاف کارهایی که تا کنون در این زمینه صورت گرفته که بر بهبود یکی از پارامترهای بهـره ی تبدیل یا خطی بودن میکسر تاکید شده، در اینجا کوشش شـده اسـت تـا ضـمن دسـتیابی بـه هـر دو ایـن پارامترها در اندازههای قابل قبول برای گیرندهها، کل پهنای باند سیستمهای UWB پوشش داده گردد.
 
بر این اساس در فصل اول سیستم های فراپهن باند بطور کامل معرفـی و بررسـی مـی گـردد، در فصل دوم به مطالعه انواع میکسر، نحوهی عملکرد و کاربرد آنها پرداختـه شـده، در فصـل سـوم سـاختار میکسرهای توزیع شده، مشخصات و تکنیکهای بهبود کارایی آنها و در فصل چهارم اعوجـاج و نـویز در میکسر مطالعه گردیدهاند. در فصل پنجم ساختار میکسر فراپهن باند طراحی شده بـه طـور مفصـل شـرح داده شده می باشد. در فصل ششم نتیجهگیری و پیشنهادات و فصل هفتم نیز منابع و مأخذ مورد بهره گیری بـه تفکیک درج شدهاند.
 
.1  فصل اول: سیستمهای فراپهن باند (UWB)
 
1-1   تاریخچه تکنولوژی فراپهن باند UWB
 
در طول دهههای اخیر پیشرفت سریع ارتباطات باعث ایجاد تقاضا برای قطعات بهتـر و ارزانتـر و همچنین تکنولوژیهای پیشرفتهتر شده می باشد. افزایش تقاضا برای انتقال سریع و افزایش نرخ اطلاعـات در عین مصرف کم توان تاثیرات شگرفی را بر تکنولوژی ارتباطات ایجاد کرده می باشد. در هر دو بخش مخابرات بیسیم و سیمی این گرایش منجر به استفادهی هرچه بیشتر از مدولاسیونهایی با استفادهی بهینـهتـر از طیف فرکانسی و یا افزایش پهنای کانالها گشته می باشد. این روشها به همـراه روشهـای مهندسـی بـرای کاهش توان، به مقصود تولید تراشه های ارزان و با مصرف توان کم در صنعت بهره گیری میشود.
 
افزایش و گسترش استانداردها نه تنها باعث شده که سیستمها با طیفهای شلوغتری از لحاظ فرکانسی روبرو باشند بلکه باعث شده می باشد تا سیستمها به سوی چند استاندارده بودن سوق داده شده و قابلیت انطباق با استانداردهای مختلف را داشته باشند. در حقیقت این پیشرفت تکنولوزی منجر به طراحی و تولید دستگاههایی شده می باشد که قابلیت کارکرد در باندهای وسیعتری را داشته باشند، مانند تکنولوژی فرا پهن باند . (UWB)
 
تکنولوژی فراپهن باند (UWB) در دهه های اخیر بسیار مورد توجه قرار گرفتـه اسـت. مـیتـوان گفت که شروع بهره گیری از دانش UWB مربوط به انتهای قرن نوزدهم می باشد. اولین سیستم بی سیم که توسط گاگلیرمو مارکونی1 در سال 1987 نمایش داده گردید، خصوصیات رادیوی فـراپهن بانـد را دارد. رادیـو ساخته شده توسط مارکونی از پهنای باند وسیعی برای انتقال اطلاعات بهره می گرفت. اولین فرستنده های جرقه ای مارکونی فضای زیادی از طیف (از فرکانس هـای بسـیار پـایین تـا فرکـانس هـای بـالا) را اشـغال می کردند. همچنین این سیستم ها به گونه غیراتوماتیک از پردازش زمان اسـتفاده مـی نمودنـد. چـون کـد مورس توسط اپراتورهای انسانی ارسال و دریافت می گردید. پس از آن مفهوم UWB مجدداً در دهـه 1960
 
برای ساخت رادارهای ایمن در برابر تداخل با مصرف توان کم مورد توجه قرار گرفت .[1]
 
در اوایل پیدایش ، UWB به نامهای Carrier free ، باند پایه یا ضربه رایج بود که در حقیقت متضمن این نکته بود که استراتژی تولید سیگنال نتیجه یک پالس با Rise time بسیار سریع و یـا یـک ضربه میباشد که یک آنتن باند پهن را تحریک می ‌کند. در اوایل سال 2002 میلادی تکنولوژی باند بسیار پهن (UWB) برای کاربردهای تجاری تصویب گردید. این تکنولوژی جدید شـیوه ی جدیـدی در ارتباطـات بدون سیم ابداع نمود:”بهره گیری از حوزه زمان به جای حوزه فرکانس”.
 
تکنولوژی فرا پهن باند (UWB) به شیوهی کاملاً متفاوتی از سایر تکنولوژی ها از بانـد فرکانسـی بهره گیری می ‌کند. این سیستمها از پالسهای باریک و پـردازش سـیگنال در حـوزهی زمـانی بـرای انتقـال
 
اطلاعات بهره گیری میکنند، به این شکل سیستمهـای فـرا پهـن بانـد (UWB) قادرنـد در بـازهی زمـانی مشخص اطلاعات بیشتری را نسبت به سیستمهای قدیمیتر منتقل کنند زیرا حجـم انتقـال اطلاعـات در سیســتمهــای مخــابراتی بــه صــورت مســتقیم بــا پهنــای بانــد تخصــیص یافتــه و لگــاریتم SNR (Signal to Noise Ratio) متناسب می باشد. بهره گیری از یک پهنای بانـد خیلـی وسـیع چنـدین مزیـت دارد: ظرفیت بالا، مخفی بودن، مقاومت در برابر مسدود شدن و همزیستی با سایر سیستم های رادیویی.
 
پایه و اساس سیستم های جدید فراپهن باند در دهه 80 توسط راس و با کار انجـام شـده در مرکـز تحقیقاتی Sperry بنیان گذاشته گردید. تأکید بر بهره گیری از UWB بـه عنـوان یـک ابـزار تحلیلـی بـرای کشف خصوصیات شبکه های مایکروویو و خصوصیات ذاتی مـواد بـود. ایـن تکنیـک هـا بـه طـور منطقـی گسترش یافتند تا تحلیل و تولید تجربی المان های آنتن را انجام دهند. موفقیـتهـای اولیـه باعـث تولیـد سیستمی خانگی گردید تا خصوصیات پاسخ ضربه اهداف یا موانع را اندازهگیری کند.
 
با افزایش درخواست کاربران برای ظرفیت بالاتر، سرویس های سریعتر و مخابرات بی سیم امن تـر، تکنولوژی های جدید مجبورند جایگاه خود را در طیف فوق العاده شلوغ و امن رادیـویی بیابنـد. بـه دلیـل اینکه هر تکنولوژی رادیویی یک بخش خاص از طیف را اشغال می ‌کند و با معرفی سـرویس هـای جدیـد رادیویی محدودیت دسترسی طیف RF سخت گیرانه تر شده می باشد. در این شرایط تکنولـوژی UWB یـک راه حل نوید بخش برای محدودیت دسترسی به طیف RF با اجازه به سرویس های جدید برای هم زیستی با سیستمهای رادیویی جاری با تداخل حداقل یا بدون تداخل می باشد.
در فوریه ی سال 2002، FCC اولین طراحی و استاندارد مربوط بـه بانـدها و تـوان مجـاز بـرای کاربران UWB را صادر نمود. بدین ترتیب باند فرکانسی 3.1GHz تا 10.6GHz به UWB اختصـاص پیدا نمود. در همین زمان FCC مجوزی صادر نمود که حدود و اندازه تشعشع عمدی یا سهوی دسـتگاه هـای مخابراتی در باندهای مختلف را مشخص نمود. این تشعشع مجاز در باندهای مورد بهره گیری، مبنـایی بـرای طراحی دستگاه های UWB گردید. با گسترش تحقیقات در این زمینه، IEEE کمیتـه ی مخصوصـی بـرای استاندارد سازی این سیسـتم هـا تحـت عنـوان 802.15.3.x تشـکیل داد. شـکل 1-1 تاریخچـه ی ایـن تکنولوژی را به اختصار نشان میدهد .[2]
 
 
 
شکل 1-1 تاریخچهی تکنولوژی فراپهن باند
 
 
در اولین گام FCC توان خروجی سیستم های UWB را به -41.3dBm/MHz محدود نمود، این محدودیت این امکان را برای سیستم های UWB ایجاد می ‌کند که بدون اینکه توان سیگنال خروجی آنها توسط سیستمهای باند باریک مجاور احساس گردد از پهنای باند وسیعی برای انتقال اطلاعات خود بهره گیری کنند. محدودیت هایی که برای توان انتشار این سیستم ها ایجاد گردید ، اکثراً محدودیتهایی بودند که برای حفاظت از سیستم GPS و سایر سیستم های دولتی که در باند فرکانسی 690MHZ~1610MHz کار میکنند مطرح شده بود. همانطور که در شکل 2-1 نشان داده شده می باشد این ماسک توان همچنین برای سایر سیستمهای دولتی که عملکرد آنها در فاصلهی 3.1GHz~10.6GHz
 
یعنی باندی که برای کاربرد داخلی UWB تعریف شده می باشد نیز کاربرد دارد.
 
شکل 2-1 طرح ماسک توان برای سیستم UWB بر حسب فرکانس [3]
 
بنا به تعریف FCC پهنای باند -10dB یک سیگنال UWB بزرگتر از %25 فرکانس مرکزی یا بزرگتر از 1.5GHz میباشد. سیستمهای فرا پهـن بانـد بـا عـرض بانـد بـیش از 7GHz در بـازه فرکانسـی
 
3.1GHz~10.6GHz با سطح توان مجاز -41.3dBm/MHz فعالیت مـیکننـد. هـر کانـال رادیـویی در ایـن سیستمها بسته به فرکانس مرکزی خود میتواند عرض بانـدی بـیش از 500MHz داشـته باشـد. طـرح
 
انتقال OFDM1 به عنوان اولین کاندیـدا بـرای UWB در مـارچ 2003 در جلسـهی گروهـی IEEE 802.15.3a مطرح گردید.
(ممکن می باشد هنگام انتقال از فایل اصلی به داخل سایت بعضی متون به هم بریزد یا بعضی نمادها و اشکال درج نشود اما در فایل دانلودی همه چیز مرتب و کامل می باشد)
تعداد صفحه : 142
قیمت : چهارده هزار تومان

این مطلب رو هم توصیه می کنم بخونین:   پایان نامه ارشد مهندسی برق: طراحی بهینه موتور سنکرون مغناطیس دائم

بلافاصله پس از پرداخت لینک دانلود فایل در اختیار شما قرار می گیرد

و در ضمن فایل خریداری شده به ایمیل شما ارسال می گردد.

پشتیبانی سایت :               serderehi@gmail.com

در صورتی که مشکلی با پرداخت آنلاین دارید می توانید مبلغ مورد نظر برای هر فایل را کارت به کارت کرده و فایل درخواستی و اطلاعات واریز را به ایمیل ما ارسال کنید تا فایل را از طریق ایمیل دریافت کنید.

***  *** ***

دسته‌ها: مهندسی برق