• واحدهای آبی و یا گازی واکنش سریع که قادرند طی زمان محدودی (در چند دقیقه) وارد مدار شده و کمبود شبکه را جبران سازند.
  • بهره گیری از ظرفیت آزاد نیروگاه‌ها (رزرو گردان) که مستلزم عملکرد صحیح سیستم کنترل سرعت توربین، موسوم به گاورنر می باشد. ثابت زمانی پاسخ گاورنر در نیروگاه‌های مختلف متفاوت می باشد. به عنوان مثال واحد‌های بخاری که در آن تغییر سریع فشار دیگ بخار مجاز نیست، نیازمند چند ده دقیقه زمان جهت تنظیم بارند. با عملکرد گاورنر نیروگاه‌های شبکه، اضافه بار متناسب با تنظیم دروپ سیستم گاورنر سرعت، بین واحد‌های تولیدی توزیع می گردد.
  • از آنجا که توان مصرفی شبکه به سطح ولتاژ آن وابسته می باشد، می‌توان با کنترل ولتاژ شبکه ی توزیع تا حدی تقاضای بار را کنترل نمود. کاهش ولتاژ توزیع منجر به تغییر در بار خانگی می گردد. اعمال این تغییرات از طریق تغییر تپ چنجر ترانسفورماتور‌های شبکه میسّر می باشد و نیازمند محدوده زمانی در حدود چند دقیقه می باشد.
  • یکی دیگر از راه‌های حفظ فرکانس سیستم، حذف بار می باشد. حذف بار یکی از سریع‌ترین راه‌های جبران کمبود توان حقیقی در سیستم قدرت به حساب می‌آید. فاصله زمانی صدور فرمان حذف بار تا انجام آن بسیار محدود بوده و در واقع زمان عملکرد کلیدهای قدرت شبکه تعیین کننده سرعت اقدام حذف بار می باشد. زمان لازم برای عملکرد کلید قدرت معمولاً چند سیکل الکتریکی می باشد. صدور فرمان می‌تواند به صورت دستی توسط بهره بردار شبکه و یا توسط مکانیزمی هوشمند و خودکار صادر می گردد. حذف بار دستی جهت افت ماندگار فرکانس شبکه صورت می‌گیرد و اندازه آن در حدود 5% می باشد. حذف بار دستی در واقع زمانی اقدام می‌‎کند که ذخیره گردان یا واحد‌های راه اندازی سریع، در کوتاه مدت قادر به جبران عامل افت فرکانس نباشند و وضعیت شبکه به حالت هشدار وارد شده باشد. در برابر حذف بار دستی از حذف بار خودکار برای حذف لااقل چند ده درصد بار شبکه در زمانی بسیار کوتاه بهره گیری می گردد. زمان عملکرد حذف بار خودکار مجموع زمان تشخیص افت فرکانس و زمان قطع کلید قدرت می باشد و حداکثر چند ده سیکل الکتریکی به طول می انجامد.
  • از میان روش‌های فوق، از رزرو گردان در حضور واحد کنترل فرکانس برای جبران نوسانات فرکانسی شبکه که دارای دامنه ای محدود هستند، بهره گیری می گردد. در این حالت معمولاً تعادل توان با عملکرد گاورنر واحدهای تولیدی شبکه مستقر می گردد. حذف بار دستی و کنترل ولتاژ شبکه پس از رسیدن سیستم به وضعیت پایدار مورد بهره گیری قرار می‌گیرند و به صورت عمده خطاهای ماندگار شبکه را اصلاح می‌کنند. حذف بار خودکار هر چند سریع‌ترین مکانیزم به شمار می رود اما آخرین راه حل برای پاسخ به عدم توازن توان حقیقی شبکه می باشد. این راه حل تنها زمانی انتخاب می گردد که عدم تعادل به قدری بزرگ باشد که گاورنر‌ها فرصت لازم برای پاسخ به آن را نداشته باشند. در این حالت فرکانس شبکه به سرعت افت می‌‎کند و از محدوده ی مجاز کار همیشگی خارج می گردد. با رسیدن وضعیت شبکه به آستانه ی خطر، این مکانیزم سریعاً بار اضافی سیستم را حذف می‌‎کند. مهّم‌ترین اشکال این روش آنست که هزینه ی حفظ انسجام سیستم و حفظ پایداری، قطع برق و انرژی الکتریکی و ضرر مالی منتج به آنست.
    افزایش ضریب نفوذ انرژی تجدیدپذیر در سیستم قدرت شاید به معنی ارتقای عدم قطعیت‌ها، موانع جدید در بهره برداری و پیدایش سوال‌های جدید در باب چگونگی کنترل این منابع در کنار ساختار‌هایی مانند کنترل خودکار تولید به نظر آید. سوال مهّمی که در شروع کار نظر مخاطب را به خود معطوف می‌دارد این می باشد که در صورت افزایش ضریب نفوذ منابع انرژی تجدیدپذیر در شبکه، ملزومات کنترل خودکار چگونه با شرایط جدید مطابقت داده می شوند؟
    اثرات ورود این منابع با ضریب نفوذ بالا در شبکه را، بایستی در چهارچوب‌های زمانی مناسب دید. در چهارچوب‌های زمانی چند ثانیه تا چندین دقیقه، قابلیّت اطمینان کلی سیستم قدرت تماماً بوسیله ادوات کنترلی خودکار و سیستم‌های کنترلی نظیر کنترل خودکار تولید، سیستم گاورنر سرعت ژنراتور‌ها و سیستم‌های تحریک آنها، پایدارسازهای سیستم قدرت، تنظیم کننده‌های خودکار ولتاژ، رله‌ها و برنامه‌های ‌حفاظتی مخصوص و سیستم‌های تشخیص و عملیاتی خطا در شبکه کنترل می شوند. در چهار چوب زمانی چند دقیقه تا یک هفته، بهره‌برداران سیستم بایستی تولید توان را به نحوی مدیریت نمایند تا با برقراری سطحی منطقی و اقتصادی از قابلیّت اطمینان، تولید نیروگاهی را با توجّه الگوی بار مصرف کنندگان و همچنین قیود عملیاتی شبکه تطبیق دهند.
    واحدهای تولیدی انرژی تجدیدپذیر بایستی ملزومات فنی لازم جهت کنترل ولتاژ و فرکانس را در خود داشته باشد و نیز در صورت بروز شرایط هشدار در شبکه از خود انعطاف لازم را نشان دهند. در کنار آن واحدهای تولیدی انرژی تجدیدپذیر می بایستی سرعت اقدام لازم جهت ایزوله ساختن واحد تولیدی در صورت بروز وضعیتی بحرانی در شبکه را از در خود ملحوظ دارد. آنها بایستی به عنوان عضوی از شبکه الکتریکی به صورت موثری فرمان پذیر باشند و به خصوص بتوانند در زمان بروز اغتشاشی در شبکه زمانیکه امنیت شبکه برق در معرض خطر باشد از خود انعطاف لازم را نشان دهند. ضریب نفوذ بالای تولیدات تجدیدپذیر به خصوص در مکان‌هایی دور از مراکز بار و تولیدات متداول انرژی، خطر اضافه بار بر روی خطوط انتقال توان را افزایش می‌دهد و در نتیجه بازنگری در طراحی شبکه و احیاناً اضافه کردن خطوط ارتباطی جدید جهت پیش گیری از بروز اضافه بار بروی ارتباطی را طلب می‌‎کند. علاوه برآن به روز کردن کد‌های شبکه در حضور ضریب بالای تولیدات تجدیدپذیر نیز ضروری به نظر می‌رسد.

    1-3- ساختار مطالعاتی پایان‌نامه

    برای غلبه بر موانع نامطلوب در بهره گیری از منابع انرژی تجدیدپذیر نظیر باد و خورشید با ضریب نفوذ بالا در شبکه چند ناحیه ای قدرت، داشتن برنامه کنترلی مناسب جهت کنترل فرکانس شبکه ضروری می باشد. از اینرو موضوعی که این پایان‌نامه کوشش در پوشش آن دارد، به کنترل فرکانسِ تولید بادی و تولید خورشیدی و مشارکت آنها در کنترل اولیّه فرکانس باز می گردد. به گونه کلی می‌توان حوزه ی دید کار حاضر را در چند بند زیر اختصار نمود:

    1. ارایه طرح کنترلی جدیدی برای شرکت دادن تولید خورشیدی در تنظیم فرکانس ناحیه در سیستم چند ناحیه ای قدرت.
    2. مشارکت دادن تولید خورشیدی در کنترل اولیّه فرکانس.
    3. پیشنهاد برنامه کنترلی مناسب جهت استخراج انرژی جنبشی ذخیره شده در جرم چرخان توربین، در پی بروز اغتشاش باری در شبکه و کمک گرفتن از این توان اضافی جهت کم کردن افت اولیّه فرکانس در پی بروز آن انحراف بار در سیستم چند ناحیه ای قدرت.
    4. مشارکت دادن تولید بادی DFIG در کنترل اولیّه فرکانس .
    5. مطالعه پاسخ دینامیکی سیستم دو ناحیه قدرت متشکّل از واحد‌های حرارتی در حضور تولید خورشیدی/بادی/ هر دو، در سیستم قدرت.
    6. بهره گیری از ذخیره‌ساز‌های انرژی برای کاهش نوسانات توان خروجی در سمت تولید بادی و برای کمک به قابلیّت تنظیم فرکانس و جلوگیری از بروز تغییرات شدید توان در سمت تولید خورشیدی.
    7. بهینه‌سازی بهره انتگرال‌گیر‌های کنترل تکمیلی دو ناحیه، ضرایب نفوذ بهینه تولیدات تجدیدپذیر(جهت تأمین سطح بهینه ای از پشتیبانی فرکانس) و همچنین تعیین ظرفیت ذخیره‌ساز در دو ناحیه، برای داشتن کمترین نرخ تغییرات فرکانس دو ناحیه و توان انتقالی خط واسط دو ناحیه.

    به این شکل می‌توان مطالبی را که در فصل‌های بعدی اظهار می گردد، سازماندهی نمود. در فصل دوم پیشینه پژوهش مفصلاً مطالعه می گردد. در فصل سوم به مطالعه و مطالعه چگونگی استحصال توان بادی بوسیله DFIG پرداخته می گردد. ایده ی بهره گیری انرژی جنبشی موجود در جرم چرخان توربین بادی و تزریق آن به شبکه جهت کاهش افت اولیّه فرکانس در زمان وقوع افزایش باری در شبکه مورد توجّه قرار می‌گیرد. در ادامه ساختار اصلی واحد تولید خورشیدی معرفی می گردد. پس از آن برنامه کنترلی مناسبی جهت شرکت دادن تولید خورشیدی در کنترل اولیّه فرکانس اظهار می گردد. فصل چهارم به ارائه نتایج شبیه سازی اختصاص دارد. سیستم دو ناحیه ای حرارتی به عنوان مدل پایه در نظر گرفته می گردد و پاسخ دینامیکی آن به انحراف بار در هر ناحیه شبیه سازی می گردد. اثر ورود تولید DFIG به شبکه با ضریب نفوذ مشخّصی در حضور برنامه کنترلی جهت پشتیبانی موقّت توان اکتیو و بدون حضور آن، مطالعه می گردد. تاثیرات ورود تولید خورشیدی با ضریب نفوذ بالا در شبکه در حضور استراتژی کنترلی پیشنهادی و عدم حضور آن مطالعه می گردد. در مرحله آخر تاثیرات توأماً ورود تولیدات باد و خورشید، در حضور برنامه‌های کنترلی مربوطه شان و در نبود آنها با مدل اصلی مقایسه می گردد. در گام بعد با احتساب اثر ورود ذخیره‌ساز پارامترهای مهّم شبکه بهینه‌ می گردند. در فصل پنجم، اقدامات صورت گرفته جهت مطالعه تأثیرات ورود تولیدات بادی DFIG و تولید خورشیدی به شبکه جمع بندی شده و در انتها گام‌ها و پیشنهادهای ممکن در ادامه ی مسیر حاضر اظهار می شوند.
     

    این مطلب رو هم توصیه می کنم بخونین:   پایان نامه ارشد مهندسی برق قدرت: ارتقاء کیفیت توان درشبکه های تجدید ساختاریافته با حضور منابع تولید پراکنده

     

     

    فصل دوم: کنترل خودکار تولید

     
     
     
     
     
     
     
     
     

    2-1- تعریف مسئله

    سیستم قدرت ذاتی غیر خطی و متغیّر با زمان دارد. برای مطالعه و تحلیل پاسخ فرکانسی سیستم قدرت نسبت به اغتشاشات کوچک بار می‌توان از مدل خطی شده ی سیستم بهره گیری نمود. اگرچه که در مطالعات پایداری دینامیکی شبکه، مطالعات کنترل ولتاژ و فرکانس را نمی‌توان مستقل از هم در نظر گرفت، اما با توجّه به این که دینامیک‌های موجود در پاسخ فرکانسی سیستم در قیاس با دینامیک‌های ولتاژ و زاویه روتور بسیار کندتر اقدام می کند، می‌توان برای مطالعات پایداری دینامیکی، مطالعات کنترل فرکانس و کنترل ولتاژ و زاویه روتور را در حالت پایدار شبکه، به صورت مستقل از هم در نظر گرفت.
    پاسخ ژنراتورهای سنکرون شبکه به تغییرات فرکانس را می‌توان به سه مرحله تقسیم بندی نمود [2]:

    • آغاز به ساکن پس از تشخیص عدم توازن در سیستم، روتور‌های ژنراتورها انرژی آزاد و یا جذب می کنند و این مسأله باعث تغییر در فرکانس سیستم می گردد. به این مرحله کنترلی اصطلاحا پاسخ اینرسی گفته می گردد.
    • زمانی که تغییرات فرکانس از مقدار معینی بیشتر گردید، کنترل کننده‌ها برای تغییر توان ورودی به سیستم فعّال می شوند و این مرحله را اصطلاحاً کنترل اولیّه فرکانس می‌نامند. این مرحله کنترلی حدود 10 ثانیه پس از وقوع حادثه آغاز و تا 20 ثانیه پس از آن نیز استمرار می‌یابد.
    • پس از آن که کنترل کننده‌های موجود اغتشاش به وجودآمده را اصلاح کردند، سیستم مجدّداً متعادل می گردد؛ اگرچه که فرکانس سیستم از مقدار نامی خود فاصله دارد. در این مرحله واحدهای تولید شبکه وظیفه باز گرداندن فرکانس سیستم به مقدار نامی آنرا بر عهده می‌گیرند. این مرحله کنترلی را کنترل ثانویه فرکانس می نامند. این مرحله از 30 ثانیه پس از زمان بروز اغتشاش شروع شده و می‌تواند تا 30 دقیقه پس از آن نیز ادامه یابد.

    در یک توربین ژنراتور، رفتار دینامیکی کلی بار-تولید و انحراف فرکانس به صورت زیر اظهار می گردد:

    (2-1)

    که در آن  انحراف فرکانس،  انحراف توان مکانیکی و  اندازه تغییرات بار می‌باشد. ثابت اینرسی با  و ثابت میرایی با  نشان داده شده ‌می باشد. با گرفتن تبدیل لاپلاس از معادله ی فوق، ارتباط زیر حاصل می گردد:

    (2-2)

    می‌توان معادله فوق را به صورت بلوک دیاگرام نشان داده شده در شکل (2-1) نمایش داد.
    شکل 2- 1 بلوک دیاگرام مدل توربین ژنراتور
     همچنین برای مدلسازی گاورنر، می‌توان از مدل ساده شده ی شکل (2-2) بهره گیری نمود.
    شکل 2- 2 مدل ساده شده ی گاورنر
    دقت گردد که در شکل (2-2)،  معرف دروپ گاورنر،  ثابت زمانی گاورنر و  رفرنس مرجع بار می باشد. مدل ساده شده ی توربین نیز به صورت شکل (2-3) در نظر گرفته شده ‌می باشد.
    شکل 2- 3 مدل ساده شده ی توربین
    به علاوه، مدل باز گرمکن توربین‌های بخاری را می‌توان با بلوک دیاگرام نشان داده شده در شکل (2-4) مدل نمود:
    شکل 2- 4 مدل توربین باز گرمکن
    بنابر این بلوک دیاگرام حلقه اولیّه کنترل بار فرکانس صورت شکل (2-5) در خواهد آمد.
    شکل 2- 5 مدل خطی و ساده شده کنترل فرکانس سیستم قدرت
    برای مدل کردن کنترل فرکانس یک سیستم ایزوله یا جزیره ای می‌توان کل مجموعه را به صورت شکل 2-5 در نظر گرفت. مدل ارائه شده می‌تواند به عنوان مدل پاسخ فرکانسی معادل برای کل سیستم در نظر گرفته گردد. در مدل جدید  و  مجموع  و ‌ های آن ناحیه می‌باشد.
    در یک سیستم جزیره ای، تنظیم خطای انتقال توان بین ناحیه ای جزو وظایف کنترل بار فرکانس نیست. تنها وظیفه کنترل بار فرکانس باز گرداندن فرکانس آن ناحیه به مقدار نامی می باشد. برای این که بتوان مدل شکل (2-6) را به یک سیستم قدرت چند ناحیه ای تعمیم داد، بایستی مفهوم ناحیه کنترلی به گونه ای تعریف گردد که در برگیرنده گروهی از ژنراتورهای همپا باشد. همپایی به این مفهوم می باشد که همه ی ژنراتورها نسبت به تغییرات بار جهت یکسانی داشته باشند. ضمنا در هر ناحیه، کنترل بار فرکانس برای تمام آن ناحیه فرض گردد.
    یک سیستم قدرت چند ناحیه ای از نواحی کنترلی مجزایی تشکیل یافته می باشد که به وسیله خطوط انتقال به یکدیگر متصل شده‌اند. انحراف فرکانس در هر ناحیه، نه تنها ناشی از تغییرات بار آن ناحیه می باشد، بلکه تغییرات توان انتقالی خطوط بین ناحیه ای نیز در آن تاثیرگذار می باشد.
    شکل 2- 6 مدل کنترل بار فرکانس سیستم چند ماشینه
    کنترل فرکانس در هر ناحیه نه فقط مسئول کنترل فرکانس همان ناحیه می باشد، بلکه مسئولیت کنترل توان انتقالی خطوط ارتباطی با نواحی دیگر را نیز بایستی برعهده گیرد. پس در یک سیستم چند ناحیه ای قدرت، بایستی تأثیر خطوط انتقال توان بین ناحیه ای را در مدلسازی کنترل بار فرکانس در نظر داشت. در شکل (2-7) یک سیستم دو ناحیه ای نشان داده شده ‌می باشد.
    شکل 2- 7 شماتیک کلی سیستم دو ناحیه ای قدرت
    در این شکل ارتباط بین توان انتقالی از خطوط ارتباطی بین دو ناحیه طبق ارتباط (2-3) حاصل می گردد:

    (2-3)

    که در آن  و  ولتاژ‌های نواحی کنترلی 1 و 2 بوده و  و  زاویه‌های بار ماشین‌های معادل نواحی 1 و 2 می‌باشد. مقصود از  راکتانس خط بین ناحیه ای می‌باشد.
     با خطی سازی ارتباط  (2-3)  حول نقطه کار   و  خواهیم داشت:
     

    (2-4)

    که در آن  گشتاور سنکرون کننده نام داشته و برابر می باشد با:

    (2-5)

    با بهره گیری از تابع تبدیل  خواهیم داشت:

    (1-6)

    در یک سیستم چند ناحیه ای علاوه بر تنظیم اولیّه فرکانس ناحیه، کنترل مکمل بایستی انحراف توان عبوری از خطوط بین ناحیه ای را نیز به صفر برساند. با افزودن یک کنترلر انتگرال‌گیر به این حلقه کنترلی، این اطمینان حاصل می گردد که اولاً انحراف موجود در فرکانس و دوماً توان انتقالی خطوط در حالت ماندگار به صفر می‌رسد. سیستم کنترلی که دو هدف عمده فوق پوشش می‌دهد را اصطلاحاً کنترل خودکار تولید می نامند. کنترل خودکار تولید با اضافه کردن یک سیگنال کنترلی جدید در حلقه کنترلی فیدبک صورت می پذیرد. همانگونه که در معادله (2-7) آید، سیگنال کنترلی مذکور که سیگنال خطای ناحیه نامیده می گردد، ترکیبی خطی از تغییرات فرکانس ناحیه به انضمام تغییرات توان انتقالی خطوط انتقالی می‌باشد:

    (2-7)

    که در آن  ضریب بایاس ناحیه (ارتباط 2-8)،  تغییرات فرکانس ناحیه و  تغییرات توان خطوط انتقالی می باشد. بلوک دیاگرام نهایی شبکه قدرت که درآن کنترل اولیّه و ثانویه فرکانس لحاظ شده ‌می باشد در شکل (2-8) آمده می باشد.
    معمولاً پیشنهاد می گردد، ضریب  به صورت زیر انتخاب گردد:

    (2-8)

    در ارتباط فوق  مشخّصه دروپ و  ضریب حسّاسیت بار نسبت به تغییرات فرکانس می‌باشد. شکل 2-8 چگونگی اعمال کنترل تکمیلی یا ثانویه را نشان می‌دهد.
    تاثیر تغییرات بار محلی و توان عبوری از خطوط بین ناحیه ای، در مدل شکل (2-8) به خوبی در نظر گرفته شده ‌می باشد. هر ناحیه کنترلی، توان عبوری از خطوط بین ناحیه ای و فرکانس ناحیه ی خود را در مرکز کنترل ناحیه خود کنترل می‌‎کند. سیگنال  بعد از محاسبه، وارد کنترل کننده ی واحد دیسپتچ می گردد. سیگنال کنترلی تولیدی به عنوان رفرنس بار به توربین گاورنر مورد نظر اعمال می گردد. بنابر این دیاگرام کنترلی پیشنهادی می‌تواند اهداف اولیّه کنترل بار فرکانس را برآورده ساخته و مقدار توان عبوری از خطوط و همچنین فرکانس ناحیه را به مقدار مشخّص شده برگرداند. 
    فرض کنید در یک ناحیه کنترلی شاهد تغییر بار به مقدار  باشیم. افزایش بار سیستم باعث کاهش فرکانس سیستم می گردد. می‌توان مقدار اولیّه این انحراف را تابع عوامل زیر دانست:

    • انرژی جنبشی موجود در قسمت گردان ماشین‌ها (لختی)
    • تعداد ژنراتورهایی که دارای کنترل اولیّه می‌باشند و ظرفیت رزرو موجود در این واحد‌های
    دسته‌ها: مهندسی برق