پایان نامه کارشناسی ارشد در رشته‌ی مهندسی مخابرات – سیستم
 
 
مطالعه روش­های آشکارسازی ناهمدوس سیگنال­های فرا­پهن­باند
 
 
 
 
 
 
استاد راهنما
دکتر مصطفی درختیان
دکتر مهرزاد بیغش
 
 
شهریور 1390
تکه هایی از متن به عنوان نمونه :
چکیده
 
مطالعه روش­های آشکارسازی ناهمدوس سیگنال­های فرا­پهن­باند
 
 
به کوشش
زکیه اتباعی
 
 
با ظهور و گسترش سیستم­های مخابراتی با عرض پالس بسیار باریک، پهنای باند بسیار وسیع، محدودیت پهنای باند و سرعت قطعات الکترونیکی موجود، بهره گیری از بسیاری از ساختار­های عیان سازی ناهمدوس شناخته شده پیشین با دشواری روبرو می باشد و طراحی گیرنده مناسب در اینگونه سیستم­ها از اهمیت ویژه­ای برخودار می باشد. در حوزه رادیویی، طراحی گیرنده­های ساده و کم مصرف در مخابرات فراپهن باند (UWB[1]) بدون بهره گیری از مکانیزم­های پیچیده تخمین کانال که عملکرد قابل قبولی داشته باشند بسیار مورد توجه می باشد.
در این پایان­نامه، به مطالعه انواع مختلف آشکارسازی ناهمدوس سیگنال­های UWB پرداخته شده می باشد. به مقصود مطالعه این مسایل، آغاز به معرفی مدل سیستم UWB پرداخته شده می باشد و سپس مدل کانال­های مورد بهره گیری در سیستم UWB که براساس دو نوع استاندارد IEEE می­باشد مورد مطالعه قرار گرفته می باشد و نتایج آنها با بهره گیری از شبیه سازی مطالعه شده می باشد. در ادامه، انواع روش­های آشکارسازی ناهمدوس سیگنال­های UWB مورد مطالعه قرار گرفته می باشد و به مقایسه و مطالعه کارایی آنها با بهره گیری از شبیه­سازی پرداخته شده می باشد. در بخش بعدی پایان­نامه، ما دو نوع آشکارسازی ناهمدوس چندسمبولی را برای مدولاسیون موقعیت پالس سیگنال­های UWB پیشنهاد دادیم. در این روش، ما از روش GLR[2] برای استخراج آشکارساز ناهمدوس یک بلوک نظاره شامل سمبول متوالی بهره گیری کردیم. در این روش ما به هیچ نوع اطلاعاتی از کانال نیاز نداریم. در ادامه، پس از استخراج آشکارساز GLR، به مقصود کاهش پیچیدگی محاسباتی آشکارساز، از تکنیک [3]SDR برای پیاده­سازی آن بهره گیری کردیم. در ادامه با فرض خاصیت تنک بودن کانال، به بهبود تخمین سیگنال دریافتی پرداختیم و با در نظر گرفتن تخمین جدید سیگنال دریافتی، آشکارساز GLR بهبود یافته را استخراج کردیم. سپس به مقصود کاهش پیچیدگی محاسباتی آن، از تکنیک SDR برای پیاده­سازی آن بهره گیری کردیم. نتایج شبیه­سازی، کارایی و عملکرد آشکارسازهای پیشنهادی را نشان می­دهد. همانطور که خواهیم دید، زمانیکه تعداد سمبول­های ارسالی در یک بلوک نظاره زیاد می­گردد کارایی هر دو آشکارساز پیشنهادی به گیرنده Rake ایده ال نزدیک خواهد گردید.
فهرست مطالب
فصل اول: مقدمه 1
1-1- تعریف 3
1-2- مزایای سیستم هایUWB 3
1-3- چالش ها 6
1-4- کاربردها 7
1-5- مطالب ارایه شده در این پایان نامه 9
فصل دوم: مدل سیستم UWB 11
2-1- شبکه های ارسال UWB 12
2-2- شبکه چند بانده 13
2-3- مدولاسیون و پالس های IR 13
2-3-1- PPM 15
2-3-2- PAM و OOK 16
2-3-3- OPM 16
2-3-4- روش TRM 17
2-4- تفاوت بین سیستم های UWB و پخش شدگی طیفی(SS) 18
2-4-1- SS دنباله مستقیم (DS) 18
2-4-2- تفاوت مهم بین تکنولوژی های SS و UWB 19
2-5- روش های SS در سیستم های UWB 19
2-5-1- DS-UWB 21
2-5-2- TH-UWB 22
فصل سوم: مدل کانال UWB 25
3-1- مدل کانال بر طبق استاندارد IEEE 802.15.3a 27
3-2- مدل کانال بر طبق استاندارد IEEE 802.15.4a 30
3-3- نتایج شبیه سازی (IEEE 802.15.3a) 36
3-4- نتایج شبیه سازی (IEEE 802.15.4a) 55
فصل چهارم: روش های آشکارسازی متداول سیگنال های UWB 64
4-1- روش آشکارسازی همدوس 65
4-2- گیرنده فیلتر منطبق کلاسیک 65
4-3- گیرنده های Rake 66
4-3-1- گیرنده های Rake ایده ال(I-Rake) 67
4-3-2- گیرنده های Rake انتخابی (S-Rake) 67
4-3-3- گیرنده های Rake نسبی (P-Rake) 67
4-3-4- تکنیک های ترکیب دایورسیتی برای گیرنده های Rake 68
4-4- روش های آشکارسازی ناهمدوس 69
4-5- آشکارسازی سیگنالینگPPM بر اساس آماره های مرتبه چهارم[18] 71
4-6- آشکارسازی سیگنالیگ PPM بر اساس وزن دهی فاصله های انرژی [19] 73
4-7- آشکارسازی انرژی سیگنالینگ PPM با چندین اندازه گیری[20] 74
4-8- آشکارسازی سیگنالینگ PAM بر اساس سیستم های مرجع انتقالی (TR)[21] 78
4-9- آشکارسازی بر اساس توابع ویژه[23،29] 79
4-10- آشکارسازی سیگنالینگ PPM براساس تخمین کوواریانس شکل موج دریافتی[25] 82
4-10-1- گیرنده بهینه برای کانال با پخش کننده های ناهمبسته 85
4-10-2- گیرنده بهینه برای کانال با پخش کننده های همبسته 86
4-10-3- روش مرتبه-1 ماکزیمم واگرایی 86
4-11- نتایج شبیه سازی 88
فصل پنجم: آشکارساز چندسمبولی پیشنهادی براساس روش GLR 97
5-1- مدل سیگنال 100
5-2- فرمولاسیون مسأله واستخراج آشکارساز GLR 101
5-2-1- آشکارسازی GLR براساس تکنیک SDR 103
5-3- آشکارسازی GLR-SDR بهبود یافته 106
5-4- نتایج شبیه سازی 110
فصل ششم: نتیجه گیری و پیشنهادات 120
6-1- نتیجه گیری 121
6-2- پیشنهادات 123
 
 
فهرست جداول
جدول (2-1) بیت های ارسالی و دنباله های شبه تصادفی 3 کاربر 24
جدول (3-1) پارامترهای مربوط به مدل (IEEE 802.15.3a) 29
جدول (3-2) پارامترهای مربوط به یک محیط مسکونی در 2 حالت LOS و NLOS 33
جدول (3-3) پارامترهای مربوط به محیط اداری داخلی در 2 حالت LOS و NLOS 34
جدول (3-4) پارامترهای مربوط به محیط بیرونی در 2 حالت LOS و NLOS 35
جدول (3-5) پارامترهای مربوط به یک محیط بیرونی باز 36
 
فهرست شکل ها
شکل (1-1) باند طیفی اختصاص یافته FCC 5
شکل (1-2) همزیستی سیستمهای UWB با سیستم های باند باریک موجود 6
شکل (2-1) مقایسه سیگنال های مدوله شده با تکنیک های مختلف مدولاسیون به همراه سیگنال غیر مدوله شده 17
شکل (2-2) مثالی از سیگنال ارسالی با تکنیک DSSS 19
شکل (2-3) مقایسه طیف دنباله پالس UWB با و بدون تکنیک تصادفی 21
شکل (2-4) پریودهای زمانی مختلف در سیستمهای TH-UWB 23
شکل (2-5) مستطیلهای قرمز، سبز و آبی نشاندهنده پالسهای ارسالی برای 3 کاربر1، 2 و 3 برای حمل 3 بیت ارسالی 24
شکل (3-1) پاسخ ضربه 100کانال مدل (CM1) 37
شکل (3-2) متوسط 100 پاسخ ضربه کانال (CM1) 38
شکل (3-3) Exsees delay    برای 100 کانال مختلف CM1 38
شکل (3-4) RMS delay spread   برای 100 کانال مختلف CM1 39
شکل (3-5) تعداد مسیرهای با dB 10 تضعیف نسبت به پیک (CM1) 39
شکل (3-6) تعداد مسیرهای % 85 انرژی کل (CM1) 40
شکل (3-7) پروفایل نزولی توان (CM1) 40
شکل (3-8) انرژی کانال به همراه متوسط و انحراف استاندارد آن (CM1) 41
شکل (3-9) 100 پاسخ ضربه کانال (CM2) 42
شکل (3-10) متوسط 100 پاسخ ضربه کانال (CM2) 42
شکل (3-11) Exsess delay   برای 100 کانال مختلف CM2 43
شکل (3-12) RMS delay spread    برای 100 کانال مختلف CM2 43
شکل (3-13) تعداد مسیرهای با dB 10 تضعیف نسبت به پیک (CM2) 44
شکل (3-14) تعداد مسیرهای % 85 انرژی کل (CM2) 44
شکل (3-15) پروفایل تاخیر نزولی توان (CM2) 45
شکل (3-16) انرژی کانال به همراه متوسط و انحراف استاندارد آن(CM2) 45
شکل (3-17) پاسخ ضربه 100کانال مدل (CM1) 46
شکل (3-18) متوسط 100پاسخ ضربه کانال (CM1) 47
شکل (3-19) Exess delay   برای 100 کانال مختلف CM1 47
شکل (3-20) RMS delay spared   برای 100 کانال مختلف CM1 48
شکل (3-21) تعداد مسیرهای با dB 10 تضعیف نسبت به پیک (CM1) 48
شکل (3-22) تعداد مسیرهای % 85 انرژی کل (CM1) 49
شکل (3-23) پروفایل تاخیر نزولی توان (CM1) 49
شکل (3-24) انرژی کانال به همراه متوسط و انحراف استاندارد آن(CM1) 50
شکل (3-25) پاسخ ضربه 100کانال مدل (CM1) 51
شکل (3-26) متوسط100 پاسخ ضربه کانال (CM1) 51
شکل (3-27) Exess delay برای 100 کانال مختلف CM1 52
شکل (3-28) RMS delay spread برای 100 کانال مختلف CM1 52
شکل (3-29) تعداد مسیرهای با dB 10 تضعیف نسبت به پیک (CM1) 53
شکل (3-30) تعداد مسیرهای % 85 انرژی کل (CM1) 53
شکل (3-31) پروفایل تاخیر نزولی کانال (CM1) 54
شکل (3-32) انرژی کانال به همراه متوسط و انحراف استاندارد آن (CM1) 54
شکل (3-33) قدر مطلق پاسخ ضربه 100کانال مدل (CM1) 56
شکل (3-34) متوسط پاسخ ضربه 100 کانال (CM1) 56
شکل (3-35) Exsess delay برای 100 کانال مختلف CM1 57
شکل (3-36) RMS delay spread برای 100 کانال مختلف CM1 57
شکل (3-37) تعداد مسیرهای با dB 10 تضعیف نسبت به پیک (CM1) 58
شکل (3-38) تعداد مسیرهای بیش از % 85 انرژی کل (CM1) 58
شکل (3-39) پروفایل تاخیر نزولی توان (CM1) 59
شکل (3-40) قدر مطلق پاسخ ضربه 100 کانال (CM2) 60
شکل (3-41) متوسط پاسخ ضربه حقیقی 100 کانال (CM2) 60
شکل (3-42) Exsess delay برای 100 کانال مختلف CM2 61
شکل (3-43) RMS delay spread برای 100 کانال مختلف CM2 61
شکل (3-44) تعداد مسیرهای با dB 10 تضعیف نسبت به پیک (CM2) 62
شکل (3-45) تعداد مسیرهای % 85 انرژی کل (CM2) 62
شکل (3-46) پروفایل تاخیر نزولی توان (CM2) 63
شکل (4-1) ساختار گیرنده فیلتر منطبق 66
شکل (4-2) پالس ارسالی با فرض بیت 0 در مدولاسیون PPM و یک نمونه سیگنال دریافتی پس از عبور از کانال UWB 69
شکل (4-3) پالس ارسالی با فرض بیت 1 در مدولاسیون PPM و یک نمونه سیگنال دریافتی پس از عبور از کانال UWB 70
شکل (4-4) مقایسه آشکارساز کورتسیس با آشکارساز انرژی براساس کانال CM1 88
شکل (4-5) مقایسه آشکارساز کورتسیس با آشکارساز انرژی براساس کانال AWGN 89
شکل (4-6) مقایسه آشکارساز انرژی وزن بهینه، زیر بهینه و عیان انرژی معمولی براساس کانال CM1 90
شکل (4-7) مقایسه آشکارساز انرژی با چندین اندازهگیری بهینه و زیر بهینه و آشکارساز انرژی معمولی براساس کانال CM1 91
شکل (4-8) مقایسه آشکارساز TR کلاسیک و TR متوسط گیری شده براساس کانال CM1 92
شکل (4-9) کارایی گیرنده eigen برای تعداد مختلف 93
شکل (4-10) عملکرد BER برای مدل کانالIEEE 802.15.3a CM1 94
شکل (4-11) عملکرد BER برای مدل کانال IEEE 802.15.3a CM8 95
شکل (4-12) بهترین فیلتر گیرنده معین برای کانال CM1 مطابق بهینه سازی تکراری معیار J-div rank-1 96
شکل (5-1) عملکرد BER آشکارساز GLR و GLR-SDR با تعداد مراحل تصادفی مختلف در حالت …. 111
شکل (5-2) مقایسه عملکرد آشکارساز GLR-SDR و ED و گیرنده ideal Rake با اندازه بلوک های مختلف در حالت کانال CM1 112
شکل (5-3) مقایسه عملکرد آشکارساز GLR-SDR و ED و گیرنده ideal Rake با اندازه بلوک های مختلف در حالت کانال CM2 113
شکل (5-4) عملکرد BER آشکارساز IGLR-SDR با مختلف برای و ….. 114
شکل (5-5) عملکرد BER آشکارساز IGLR-SDR با مختلف برای و …… 115
شکل (5-6) مقایسه عملکرد آشکارساز IGLR-SDR، GLR-SDR، ED و KD برای ، و در حالت کانال CM1 116
شکل (5-7) مقایسه عملکرد آشکارساز IGLR-SDR، GLR-SDR، ED و KD برای ، و در حالت کانال CM2 117
شکل (5-8) مقایسه عملکرد آشکارساز IGLR-SDR، GLR-SDR و ED برای ، و در حالت کانال CM1 118
شکل (5-9) مقایسه عملکرد آشکارساز IGLR-SDR، GLR-SDR و ED برای ، و در حالت کانال CM2 119
 
 
 
 
 
 
 
 
 
 
 
فصل اول
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
مقدمه
 
ظهور سیستم­های مخابراتی با عرض پالس بسیار باریک و پهنای باند بسیار وسیع و پیداش کاربرد­های متنوع برای آنها، در سالیان اخیر زمینه ساز تحقیقات گسترده­ای در جنبه­های گوناگون نظری و پیاده­سازی عملی چنین سیستم­هایی گشته می باشد. سیستم­های فراپهن باند (UWB) از حدود 20 سال قبل در مخابرات نظامی، موقعیت یابی و رادار مورد بهره گیری قرار گرفته می باشد و اخیرا بر روی الکترونیک­های مصرفی و مخابراتی توجه شده می باشد. لیکن با افزایش تقاضا برای کاربرد تجاری این تکنیک و با کوشش­هایی که از اواخر دهه 1990 آغاز گردید، در نهایت مجوز بهره گیری از گستره فرکانسی حدود GHz 10-3، به شرط رعایت محدودیت­های شدید بر سقف توان ارسالی، صادر گردید.. در واقع، بسیاری از سیستم­های مخابراتی بی سیم از فرکانس­های باند باریک مجزا به مقصود جلوگیری از تداخل با یکدیگر بهره گیری می­کنند. به هر حال، برای سیستم­های UWB به مقصود جلوگیری از تداخل با دیگر سیستم­ها، به شرط رعایت محدودیت­های شدید بر سقف توان ارسالی و طیف تعریف بر طبق FCC می­توانند به کار طریقه.
سیستم­های UWB ویژگی­های منحصر به فردی نسبت به سیستم­های مخابراتی دیگر دارند. دو ویژگی منحصر به فرد سیستم­های UWB، پهنای باند بسیار وسیع و Duty Cycle پایین آن می­باشد. پهنای باند بسیار وسیع منجر به انتقال پالس­های بسیار باریک که بیت­های اطلاعاتی را حمل می­کنند، می­گردد. در واقع سیستم­های UWB، به جای بهره گیری از توان بسیار بالا در رنج فرکانس­های مجزا، از سیگنال­های با توان پایین و در رنج فرکانسی بسیار زیاد بهره گیری می­کنند. پس ارسال سیگنال­های UWBبه عنوان یک سیگنال نویزی برای سیستم­های مخابراتی دیگر ظاهر گردید. سیستم­های UWB برای کاربرد­های داخلی که نیاز به نرخ دیتای بالا دارند و در رنج فاصله کوتاه 1 تا 10 متر، می­توانند مورد بهره گیری قرار ­گیرند. Duty Cycle به عنوان نسبتی از زمانی که یک پالس در یک دوره تناوب قرار می­گیرد، تعریف می­گردد که در سیستم­های UWB مقدار آن بسیار کم و در حدود 0.005 می­باشد.

  • تعریف
این مطلب رو هم توصیه می کنم بخونین:   پایان نامه ارشد رشته برق الکترونیک: طراحی سخت افزار ونرم افزار برد DSP جهت TRAU

لفظ UWB علیرغم معنای نسبتا عامی که تا پیش از دهه 1990 داشت به سیگنال­هایی اطلاق گردید که دارای پهنای باند حداقل MHz 500 باشند، یا پهنای باند نسبی آنها (نسبت پهنای باند به فرکانس مرکزی) بیش از %20 باشد[3]. پهنای باند نسبی به صورت زیر اظهار می­گردد:

(1-1)  

فرکانس­های قطع بالا و پایین می­باشد. در گزارش FCC [3]، کاربرد UWB در سه گروه طبقه­بندی می­گردد: 1. سیستم­های اندازه­گیری و مخابراتی 2. سیستم­های راداری انتقالی 3. سیستم­های تصویری. در اینجا باند طیفی مربوط به گروه اول در ‏شکل (1-1) آمده می باشد. همانطوری که می­بینید طیف فرکانسی اختصاص یافته برای ارسال UWB 1/3 تا     GHz 6/10 می باشد و ماکزیمم سطح توان مجاز برای ارسال UWB، dBm/MHz 3/41- می­باشد، این سطح توان کمتر از سطح توان نویز برای سیستم­های مخابراتی UWB می­باشد.

  • مزایای سیستم ­هایUWB

سیستم­های UWB به دلیل بهره گیری از پهنای باند بسیار زیاد دارای ویژگی­های منحصر به فردی می­باشند که سیستم­های UWB را از دیگر سیستم­های باند باریک کلاسیک متمایز می­سازد[1،2،5،6،14]. این ویژگی­ها عبارتند از:
1- توانایی به کارگیری سیستم­های UWB به همراه وجود سیستم­های بی­سیم دیگر می­باشند. محدودیت توان FCC، نیاز به سیستم­های UWB ی دارد که قادر به ارسال سیگنال­های شبه نویزی باشند که منجر به احتمال کم برای آشکارسازی و تداخل برای سیستم­های دیگر خواهد گردید‏شکل (1-2) .
2- قادر به مصالحه بین فاصله و نرخ دیتا هستند. فرض کنید برای حمل یک بیت دیتا پالس ارسال گردد، برای فاصله­های زیاد، به مقصود ارسال قابل قبول، می­تواند زیاد باشد و زیاد منجر به نرخ دیتای پایین خواهد گردید، به بیانی دیگر، می­تواند برای فاصله کم کاهش پیدا کند و منجر به نرخ دیتای بالا گردد. پس تعداد پالس­های بیشتر بر بیت برای ارسال در فاصله­های زیاد به کار می­رود.
3- توانایی داشتن ظرفیت زیاد را دارند. معادله معروف شانون برای ظرفیت، بینش مربوط به مزیت سیستم­های بی­سیم UWB را به ما می­دهد. مطابق قانون شانون، توانایی ظرفیت یک کانال به صورت زیر اظهار می­گردد:

(1-2)  

و به ترتیب توان کل سیگنال و توان نویز را اظهار می­کنند و پهنای باند کانال می­باشد. سطح توان ارسالی کم سیستم­های UWB برای ظرفیت کانال بی­فایده می باشد، به هر حال، سیستم­های UWB به دلیل پهنای باند زیاد، اثر سیگنال به نویز پایین (SNR) را جبران می­کنند. پس سیستم­های UWB برای ظرفیت بالای مخابرات بی­سیم پیشنهاد می­شوند[5].
[1] Ultra Wideband
[2] Generalized Likelihood Ratio
[3] Semi-definite Relaxation
***ممکن می باشد هنگام انتقال از فایل اصلی به داخل سایت بعضی متون به هم بریزد یا بعضی نمادها و اشکال درج نشود اما در فایل دانلودی همه چیز مرتب و کامل و با فرمت ورد موجود می باشد***

متن کامل را می توانید دانلود نمائید

زیرا فقط تکه هایی از متن پایان نامه در این صفحه درج شده (به گونه نمونه)

اما در فایل دانلودی متن کامل پایان نامه

 با فرمت ورد word که قابل ویرایش و کپی کردن می باشند

موجود می باشد

تعداد صفحه :115

قیمت : 14700 تومان

***

—-

پشتیبانی سایت :       ****     serderehi@gmail.com

در صورتی که مشکلی با پرداخت آنلاین دارید می توانید مبلغ مورد نظر برای هر فایل را کارت به کارت کرده و فایل درخواستی و اطلاعات واریز را به ایمیل ما ارسال کنید تا فایل را از طریق ایمیل دریافت کنید.

—  — —

دسته‌ها: مهندسی برق